Soil Food Webs

Amanda Hodson Ph.D.
Project Scientist
Department of Entomology and Nematology
University of California Davis
Photosynthesis

Plant makes:
- Carbohydrates
- Amino acids/proteins
- Lipids (fats)
- Lignin
- Phenolics
- Vitamins

Then it dies and decomposes!
Microbiome

• the microorganisms in a particular environment (or their combined genetic material)
Plant roots feed the Microbes!

- Plant roots use 25 to 40% of their root carbohydrate supplies to feed the microbes!
- Plants actively use hormones to attract and “farm” bacteria, fungus, and other organisms to help them recycle soil nutrients and water.
Rhizosphere

- Living roots release many types of organic materials into the rhizosphere within 50 μm of the surface of the root.
- There are over 1000-2000 times more microbes associated with a live root than in the bulk soil.
The rhizosphere

- Plants influence their microbiome through exudates (fluids).
- These stimulate (green arrows) or inhibit (red blocked arrows) microbes.
- Microbes also affect plant health (for good or bad) and interact with each other.
Relative amount of microbes in handful of soil

In 100-200 g soil:

• Bacteria 50 billion
• Actinomycetes 2 billion
• Protozoa 50 million
• Fungus 100 million
• Nematodes 10,000
• Arthropods 1000
• Earthworms 0 to 2
Table 1—Estimated number of species of plants and of soil organisms organized according to body size (modified from Wall et al., 2001)

<table>
<thead>
<tr>
<th>Size</th>
<th>Group</th>
<th>Known species</th>
<th>Estimated total species</th>
<th>% Known</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vascular plantsa</td>
<td>270000</td>
<td>300000</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Macrofauna</td>
<td>8800</td>
<td>15000</td>
<td>58.7</td>
</tr>
<tr>
<td></td>
<td>Ants</td>
<td>1600</td>
<td>3000</td>
<td>53.3</td>
</tr>
<tr>
<td></td>
<td>Termites</td>
<td>3600</td>
<td>No estimate</td>
<td>No estimate</td>
</tr>
<tr>
<td></td>
<td>Mesofauna</td>
<td>20,000–30,000</td>
<td>900,000</td>
<td>2.2–3.3</td>
</tr>
<tr>
<td></td>
<td>Mites</td>
<td>6500</td>
<td>24,000</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>Collembola</td>
<td>1500</td>
<td>200,000</td>
<td>7.5%</td>
</tr>
<tr>
<td></td>
<td>Microfauna</td>
<td>5000</td>
<td>400,000</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Protozoa</td>
<td>13,000</td>
<td>1,000,000</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Nematodes</td>
<td>18000–35000</td>
<td>1,500,000</td>
<td>1–2%</td>
</tr>
</tbody>
</table>

Soil animal categories

• Microflora and fauna (< 0.1 mm)
 • Bacteria
 • Fungi
• Mesofauna (< 2 mm)
 • Mites
 • Collembola
• Macrofauna (> 2 mm)
 • Insects, earthworms, roly-pollies

Collembola on a leaf
Soil Microorganisms – bacteria and fungi

- Bacteria are tiny, one-celled organisms – generally 4/100,000 of an inch wide (1 μm)
- What bacteria lack in size, they make up in numbers.
- A teaspoon of productive soil generally contains between 100 million and 1 billion bacteria.
- That is as much mass as two cows per acre.
Fungi

• Fungi grow as long threads or strands called hyphae—several thousandths of an inch (a few micrometers) in diameter.

• These push their way between soil particles, roots, and rocks.

• A single hyphae can span in length from a few cells to many yards.
Mutualists

• mycorrhizal fungi – colonize plant roots.
• In exchange for carbon from the plant, make nutrients available.
• *ectomycorrhizae* grow on the surface layers of roots—commonly associated with trees.
• *endomycorrhizae* that grow within the root cells and are commonly associated with grasses, row crops, vegetables, and shrubs.
Decomposing fungi

• Saprophytic fungi
• Fungi can bridge gaps between pockets of moisture
• Can survive and grow when soil moisture is too low for most bacteria to be active.
What do soil fauna do?

Microorganisms
- Mineralize most C and N
- Binding of soil aggregates
- Detoxification
- Symbionts/disease

Soil Fauna
- Eat/fragment detritus
- Feces stimulate bacteria and fungi
- Increase soil porosity (burrows)
- Increase aggregate stability (casts)
What do soil fauna do?

• Chemical Engineers—make nutrients accessible to the plants and other animals.
• Biological Regulators—population control, consume both flora and fauna.
• Ecosystem Engineers—modify soil structure, reduce compaction and create habitats.
What Are Mineralization and Immobilization?

Soil nutrients generally occur in two forms: inorganic compounds dissolved in water or attached to minerals, and organic compounds part of living organisms and dead organic matter. Bacteria, fungi, nematodes, protozoa, and arthropods are always transforming nutrients between these two forms. When they consume inorganic compounds to construct cells, enzymes, and other organic compounds needed to grow, they are said to be “immobilizing” nutrients. When organisms excrete inorganic waste compounds, they are said to be “mineralizing” nutrients.

Organisms consume other organisms and excrete inorganic wastes.

These nutrients are stored in soil organisms.

mineralization

NH_4^+

These nutrients are usable by plants and are mobile in soil.

immobilization

Organisms retain nutrients as they grow.
Macrofauna

- Macrofauna (>2mm) earthworms, pill bugs, millipedes
Arthropods

• Millipedes, sowbugs, certain mites, and roaches.
• Chew up dead plant matter as they eat bacteria and fungi on the surface of the plant matter.
• In agricultural soils, shredders can become pests by feeding on live roots if sufficient dead plant material is not present.
Surface dwelling marcofauna: Pitfall trap

• Sink a container (such as a yogurt cup) into the ground so the rim is level with the soil surface.

• Add 1/2 of an inch of non-hazardous antifreeze to the cup to preserve the creatures and prevent them from eating one another.

• Leave in place for a week and wait for soil organisms to fall into the trap.
Earthworms

• Eat organic matter “seasoned” with bacteria and fungi.
• Fragment and inoculate organic matter with more microbes—“sleeping beauty” hypothesis.
• Earthworm poop awakens the sleeping kingdom of microbes!
• Generate tons of casts per acre each year
What Do Earthworms Do?

• Stimulate microbial activity.
• Mix and aggregate soil.
• Increase infiltration-burrows.
• Improve water-holding capacity-by fragmenting organic matter, and increasing soil porosity and aggregation.
• Provide channels for root growth.
• Bury and shred plant residue.
Where do earthworms live?

- **Surface soil and litter**
 - Epigeic species live in or near surface plant litter.
 - Compost worms

- **Upper soil**
 - Endogeic species feed primarily on soil organic matter.

- **Deep-burrowing**
 - Anecic species- more permanent deep (1 m) burrow systems
 - “night crawler,” Lumbricus terrestris
 - Feed mainly on surface litter that they pull into their burrows.

Soil and organic matter in a burrow. Clive A. Edwards, The Ohio State University, Columbus. Please contact the Soil and Water Conservation Society
Earthworms as “Ecosystem Engineers”

- Promote microbial activity by shredding and inoculation with gut microbes.
- Increasing the surface area of organic matter and makes it more available to small organisms.
- Change the amount and distribution of organic matter.
- Affect spatial distribution of soil microarthropod communities.

Earthworm casts at soil surface
Mesofauna

• Mesofauna (0.1-2mm) mites, collembolans (spring tails), enchytraeids
Arthropods - Mites

- 200 species of mites in this microscope view.
- Extracted from one square foot of the top two inches of forest litter and soil.
- Poorly studied, but enormously significant for nutrient release.

Val Behan-Pelletier, Agriculture and Agri-Food Canada
Mites

• Some prey on nematodes, springtails, other mites, and the larvae of insects.
• Others graze on microbes from root surfaces or dead leaves.

Collemebola

Onychiruidae

Entomobryidae

Hypopastruridae

Isotomidae

www.collebola.org
Collembola

• ~8600 described species worldwide.
• Among the oldest known terrestrial animals.
• Fossils from the Devonian (ca 400 million years ago).
• Ubiquitous in terrestrial systems.
• One of the more successful arthropod lineages.
Microfauna

- Microfauna (<0.1 mm diam) – nematodes, protozoa
Protozoa

• Single-celled animals
• Feed primarily on bacteria
• Ranging from 1/5000 to 1/50 of an inch (5 to 500 µm) in diameter.
• As they eat bacteria, protozoa release excess nitrogen that can then be used by plants and other members of the food web.
What is a nematode?

- Microscopic roundworms, phylum Nematoda.
- Most numerous multicellular animals on earth.
- A handful of soil will contain thousands— many of them parasites of insects, plants or animals.
- Free-living species include nematodes that feed on bacteria, fungi, and other nematodes.
- The vast majority of species encountered are poorly understood biologically. There are nearly 20,000 described species.
Nematode life history strategies

• Bacterial feeders—C. elegans
• Insect parasites—Entomopathogenic nematodes (EPNs)
• Fungal feeders
• Omnivores
• Predators
• Plant Parasites
Nematodes as Bio-indicators

- Key positions in soil food webs
- Clear relationship between structure and function
- Abundant and ubiquitous
- Each soil sample has high intrinsic information value
Rhabditidae
Panagrolaimidae

- Short lifecycle
- Small/Mod. body size
- High fecundity
- Small eggs
- Dauer stages
- Wide amplitude
- Opportunists
- Disturbed conditions

Basal Fauna

Aporcelaimidae, Nygolaimidae, etc.

- Long lifecycle
- Large body size
- Low fecundity
- Large eggs
- Stress intolerant
- Narrow amplitude
- Undisturbed conditions

Enrichment Indicators

Cephalobidae
Aphelenchidae, etc.

- Moderate lifecycle
- Small body size
- Stress tolerant
- Feeding adaptations
- Present in all soils

Structure Indicators
Testable Hypotheses of Food Web Structure and Function

Ferris et al. (2001)
Food Web Analyses

Structure Index

Enrichment Index

Prune Orchards Yuba Co.

Redwood Forest and Grass Mendocino Co.

Tomato Systems Yolo Co.

Mojave Desert
The main scientific goal of our lab is to learn how to more sustainably manage agroecological systems to control pests and improve soil health. In particular, we study soil ecology, plant pest interactions, and biological control—both independently and through collaborations with industry and other laboratories.

Pest Detection
- qPCR-Orchard nematodes
- qPCR-carrot nematodes

Cultural Control
- Amendments - compost, food hydrolysate
- Water-deficit or modifications

Inundative Control
- Insect parasitic nematodes
- Biobased pesticides
Pest Detection
- qPCR-Orchard nematodes
- qPCR-carrot nematodes

Cultural Control
- Amendments - compost, food hydrolysate
- Water-deficit or modifications

Innundative Control
- Insect parasitic nematodes
- Biobased pesticides
Applied nematode ecology: Ecological effects of an organic Amendment - stabilized food hydrolysate

• Unsold food collected from supermarkets in California.
• Digested with enzymes to produce a stabilized product consisting of amino acids, simple sugars, fatty acids, and minerals
• Marketed as a liquid fertilizer product to improve soil health.
 • Does it improve plant growth?
 • Does it influence soil biology?
Stabilized food hydrolysate

- Bacterial activity
- Organic matter breakdown
- Nutrient availability
Food waste products in almonds

• Can composted food waste and food hydrolysate increase soil carbon stocks?
• How do these nutrient sources differ in their ability to provide plant nutrition and increase growth?
• How do they differ in their potential for nitrate leaching, especially compared to chemical fertilizer?
• What changes do these products cause in soil biological communities?

Treatments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>Nitrogen fertilizer (UAN32)</td>
</tr>
<tr>
<td>*</td>
<td>H2H</td>
</tr>
<tr>
<td>●/*</td>
<td>50 % H2H + 50% fertilizer</td>
</tr>
<tr>
<td>○</td>
<td>Control</td>
</tr>
</tbody>
</table>
Raised bed experiment
<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Feeding habit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhabditidae</td>
<td>Rhabditis bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Diplogasteridae</td>
<td>Diplogaster bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Cephalobidae</td>
<td>Cephalobus bacteriovores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucephalobus bacteriovores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrobeles bacteriovores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrobeloides bacteriovores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervidellus bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Plectidae</td>
<td>Plectus bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Monhysteridae</td>
<td>Monhystera bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Prismatolaimidae</td>
<td>prismetolainus bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Alaimina(Alaimdae)</td>
<td>Alaimus bacteriovores</td>
<td></td>
</tr>
<tr>
<td>Aphelenchoididae</td>
<td>Aphelenchoides fungivores</td>
<td></td>
</tr>
<tr>
<td>Aphelenchidae</td>
<td>Aphelenchus fungivores</td>
<td></td>
</tr>
<tr>
<td>Dorylaimidae</td>
<td>Dorylaimus Omnivores</td>
<td></td>
</tr>
<tr>
<td>Tylenchidae</td>
<td>Tylenchus Herbivores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filenchus Herbivores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetylenchus Herbivores</td>
<td></td>
</tr>
<tr>
<td>Paratylenchidae</td>
<td>Paratylenchus Herbivores</td>
<td></td>
</tr>
<tr>
<td>Tylenchorhynchidae</td>
<td>Tylenchorhynchus Herbivores</td>
<td></td>
</tr>
<tr>
<td>Pratylenchidae</td>
<td>Pratylenchus Herbivores</td>
<td></td>
</tr>
<tr>
<td>Heteroderidae</td>
<td>Meloidogyne Herbivores</td>
<td></td>
</tr>
</tbody>
</table>
Effects on soil biology

- Decreased pest root knot nematodes in H2H treated plots compared to controls (P=0.03)
Effects on soil biology

- Increased beneficial bacterial feeding nematodes compared to controls (P=0.03).
Managing for pest suppressive soils

- General suppression – protective community
- Specific suppression—targeted
- Inoculation—natural enemies are released directly via soil, seeds or planting materials
Mechanisms of Biological Control

- Predation
- Parasitism
- Competition for food/space – consortia?
- Antibiosis/toxic compounds
Thank you very much!!!

• akhodson@ucdavis.edu